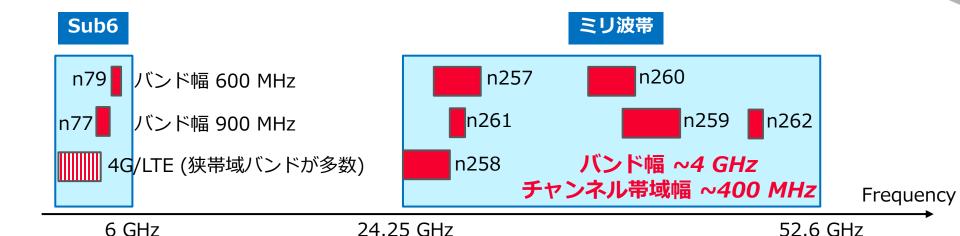


ミリ波帯アンテナーモジュール技術

株式会社村田製作所 上田 英樹

目次

- はじめに
- ✓パッケージング技術
- アンテナ技術
- ┛材料技術
- ミリ波帯を用いるメリット
- まとめ


目次

- はじめに
- ●パッケージング技術
- アンテナ技術
- ┛材料技術
- ミリ波帯を用いるメリット
- まとめ

5Gで使用されるRF周波数帯

ミリ波帯への期待

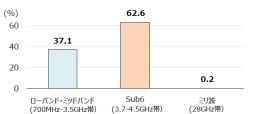
- 将来のトラヒック増加への対応
- 広帯域性を活かした革新的アプリケーション創出

5Gにおけるミリ波のトラヒック量

【参考】電波の利用状況調査の結果(帯域ごとの5G基地局の整備状況)


- 事業者ごとの5G基地局の整備状況は、NTTドコモや楽天モバイルはSub6やミリ波が中心となっており、KDDIやソフトバンクはローバンド・ミッドバンドの基地局数が多くなっている。
- 5Gの全国人口カバー率 (2022年3月末時点で93.2%) はローバンド・ミッドバンドによる寄与が大きい。Sub6 については、カバー率は限られているが、処理しているトラヒック量は最も多い。ミリ波帯については、局数も少なく、カバー率は0.0%、処理しているトラヒック量もほぼなく、限定的な利用にとどまっている。

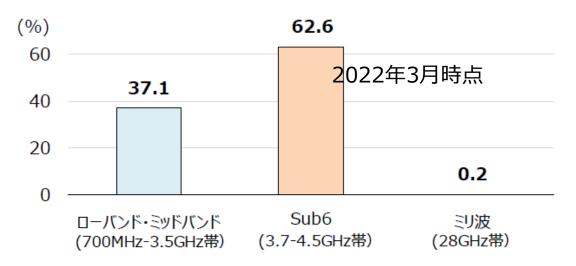
帯域別の各社5G基地局数と人口カバー率


(いずれも2022年3月時点の値)

		5 G基地局数(人口カバー率)			
	,	NTT ドコモ	KDDI	ソフト バンク	楽天 モバイル
	700MHz	-	4,334 (55.5%)	12,174 (90.7%)	-
周波数 : 低 伝送情報量 : 小 カバーエリア : 大	1.7GHz	-	7 (0.0%)	10,670 (83.9%)	-
	3.4GHz/ 3.5GHz	3 (0.0%)	5,709 (30.1%)	11,400 (52.8%)	-
周波数:高伝送情報量:大力バーエリア:小	3.7GHz	7,895 (15.4%)	5,226 (2.4%)	2,542 (14.3%)	5,753 (12.6%)
	4.0GHz/ 4.5GHz	8,678 (31.8%)	437 (0.0%)	-	-
	28GHz	3,140 (0.0%)	2,328 (0.0%)	2,265 (0.0%)	5,485 (0.0%)

事業者別の5 G基地局整備状況

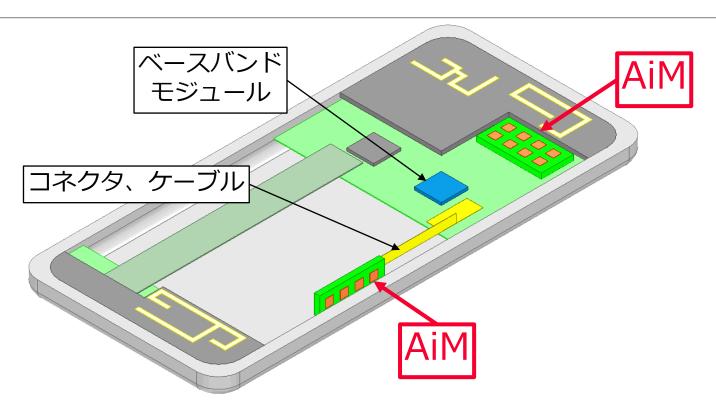
帯域別の5Gトラヒック量



出典:総務省,5Gビジネスデザインワーキンググループ(第3回)配布資料,令和5年2月9日

5Gにおけるミリ波のトラヒック量

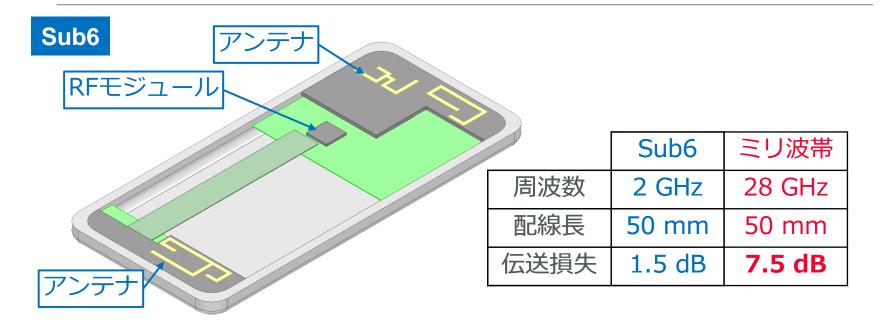
帯域別の5Gトラヒック量



5Gにおけるミリ波のトラヒック量は 全体の0.2%に留まっている(2022年3月時点)

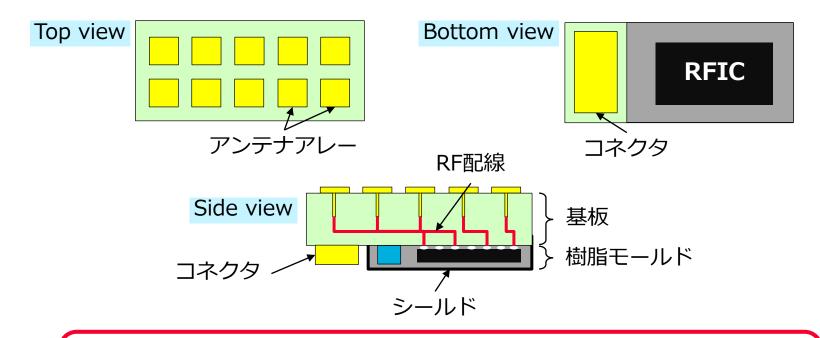
出典:総務省,5Gビジネスデザインワーキンググループ(第3回)配布資料,令和5年2月9日

携帯端末内部のミリ波部品



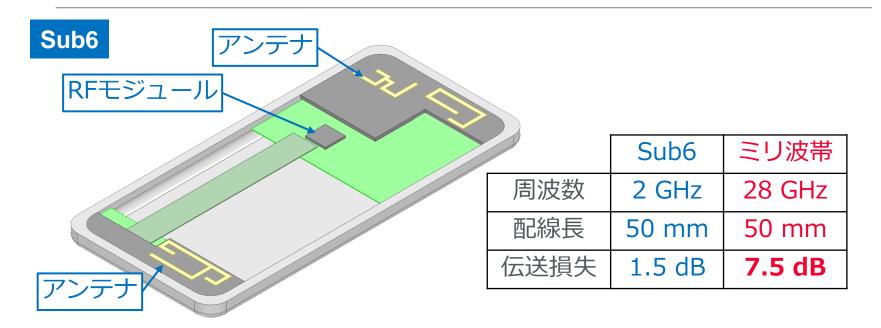
AiM: Antenna integrated module

Sub6のハードウェア構成とミリ波帯の伝送損失

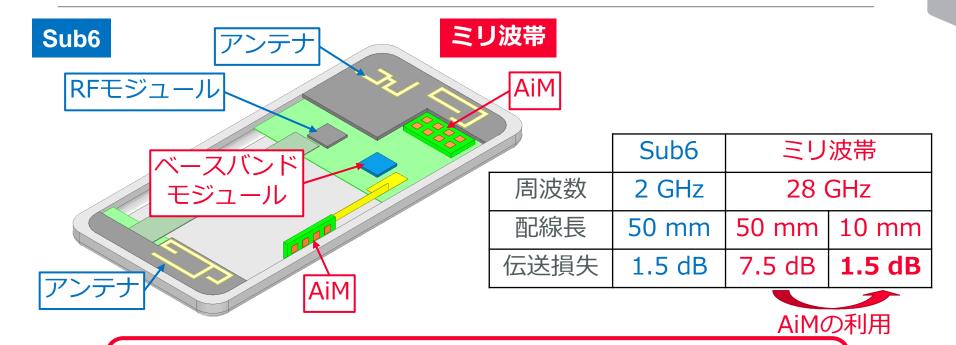


ミリ波帯でSub6と同じ配線長を用いた場合、 伝送損失が増加する問題がある

AiM: Antenna integrated Module



AiMはRFICからアンテナまでの配線長を最短化し、 伝送損失を最小化できるモジュール形態である

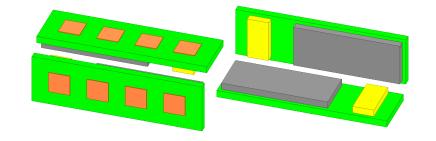

AiMを用いた低損失なミリ波帯のハードウェア構成 **muRata**

AiMを用いた低損失なミリ波帯のハードウェア構成 muRata

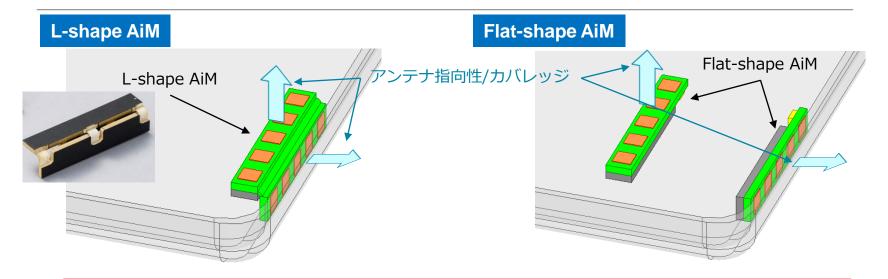
AiMを用いてRFの配線長を最短化することで、 ミリ波帯でもsub6と同等の伝送損失を実現できる

目次

- はじめに
- ●パッケージング技術
- アンテナ技術
- ┛材料技術
- ミリ波帯を用いるメリット
- まとめ

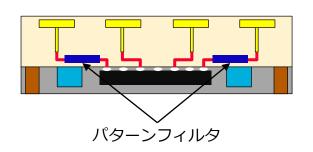

L-shape AiM

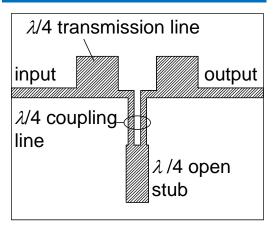
L-shape AiM


Flat-shape AiM

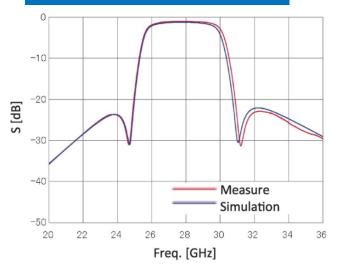
メトロサーク™の形状自由度の活用でL-shape AiMを実現し、 より少ないRFICの数でより広いカバレッジを実現できる

端末内でのAiM配置

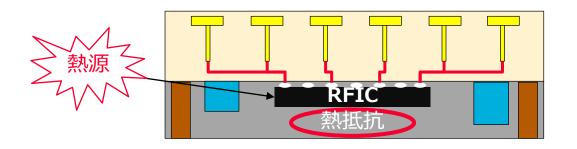



L-shape AiMは、異なる方向に2つのFlat-shape AiMを 配置した場合と同等のアンテナカバレッジを実現でき、 占有体積の低減とシステムの低コスト化に貢献できる

パターンフィルタ内蔵

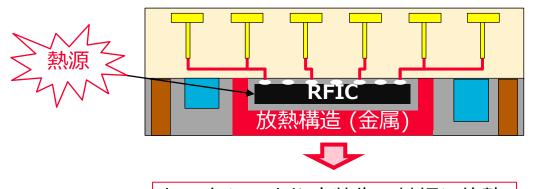


ローパスフィルタの構成の例


バンドパスフィルタ特性の例

不要放射抑圧のため、フィルタが必要になる場合がある 波長が短いので、基板内の伝送線路を用いてフィルタを内蔵できる

放熱構造內蔵



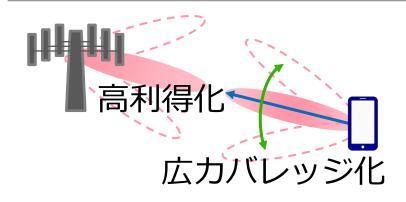
アンテナアレー面には放熱構造を配置できない RFIC下部の樹脂層が厚いため、放熱性が悪い

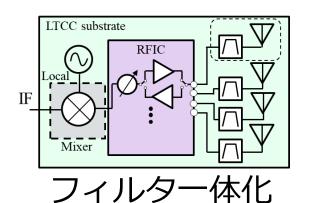
放熱構造內蔵

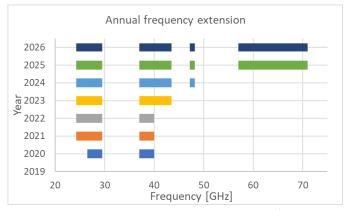
ヒートシンクや実装先の基板に放熱

ナアレー面には放熱構造を配置できない RFIC下部の樹脂層が厚いため、放熱性が悪い

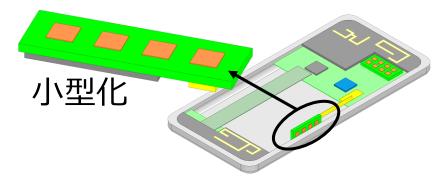
放熱構造を内蔵し、RFICの発熱対策を行う


目次

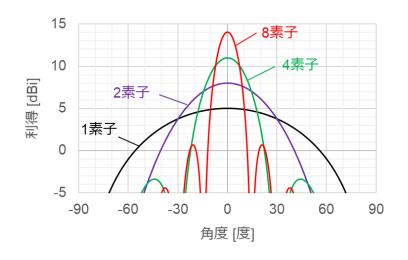



- **■** はじめに
- ✓パッケージング技術
- アンテナ技術
- ┛材料技術
- ミリ波帯を用いるメリット
- まとめ

ミリ波帯におけるアンテナの課題



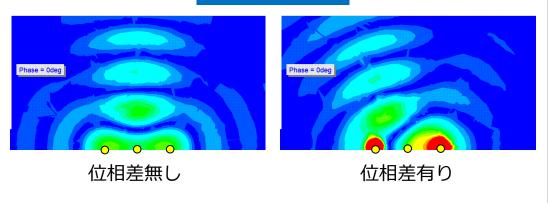
広帯域化・マルチバンド化


高利得化:アレーアンテナ

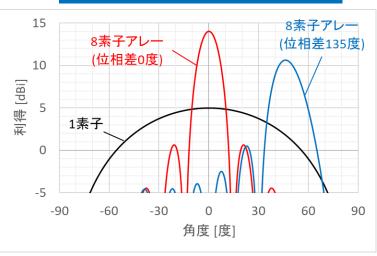
パッチアンテナをアレー化

パッチアンテナ

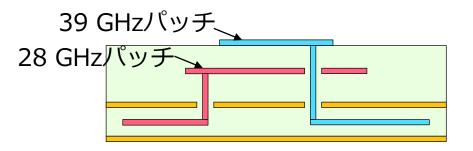
素子数と利得・放射パターンの関係

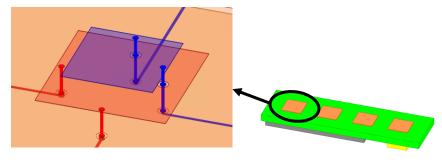


アレー化により面積を増加し、高利得化を実現する


高利得化・広力バレッジ化:フェーズドアレー

3素子アレーの例


素子間位相差とステアリング角 (素子間隔 = 1/2波長)

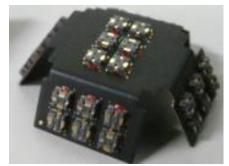


アレーの素子間に位相差を与えることで、ビームステアリングができる 1素子の指向性をアレー数で増幅するため、広角での高利得化には限界がある

アンテナスタックによる 小型マルチバンドアンテナ

同一領域で2周波・2偏波の アンテナを実現する

動作周波数帯が異なるパッチアンテナをスタックし、 小型かつマルチバンドのアンテナを実現する


広力バレッジ化:多面形状

5面曲げAiM

1面のみの利得カバレッジ

5面曲げAiMでの利得カバレッジ

メトロサーク™を曲げた 広カバレッジなAiM

アンテナを5方向に向けることで カバレッジが拡大する

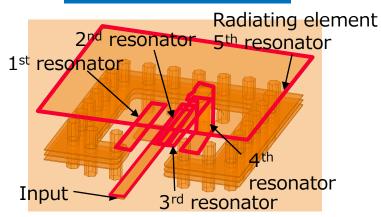
メトロサーク™の形状自由度を活用し 広カバレッジな多面形状のAiMを実現できる **12-13**

11-12

10-11

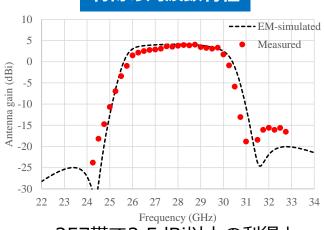
9-10

8-9 7-8


6-7

5-6

フィルター体化:フィルタリングアンテナ



フィルタリングアンテナ

アンテナの放射素子と、フィルタを構成する 多段の共振器を同一領域に形成した

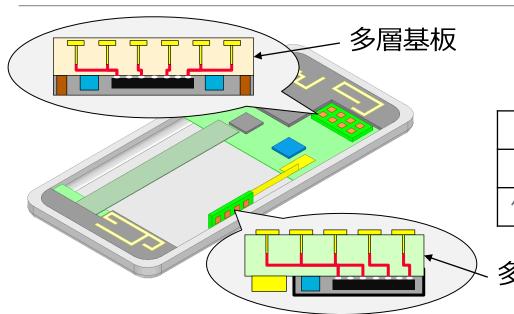
利得の周波数特性

n257帯で2.5dBi以上の利得と 急峻なスカート特性を実現した

RFICと各アンテナ間にフィルタが必要な場合がある

アンテナの放射素子を多段フィルタの共振器の一つとみなし、 アンテナとフィルタの一体化による回路の小型化を実現する

K. Sudo, et al., "A 28 GHz Band Dual-Polarized LTCC Filtering Antenna with Extracted-pole Unit," Proc. of 2022 Asia-Pacific Microwave Conf., 306-308, Nov. 2022.


目次

- **■** はじめに
- ┛パッケージング技術
- アンテナ技術
- ▶ 材料技術
- ミリ波帯を用いるメリット
- **≠** まとめ

材料:低損失な多層基板材料

	Sub6	ミリ波帯
周波数	2 GHz	28 GHz
配線長	50 mm	10 mm
HOUNTE	30 111111	10 111111

多層基板

ミリ波帯は伝送損失が大きいため 低損失な多層基板材料が不可欠である

材料: 低損失多層基板の特性 (実測値)

		誘電率 ε _r @ 60 GHz	誘電正接 tan <i>δ</i> @ 60 GHz	伝送損失 [dB/10 mm] @ 30 GHz
PTFE (Polytetrafi	luoroethylene)	3.0 *	0.0013 **	0.36 ***
РСВ	粗化銅	3.6	0.006	0.76
	低粗化銅			0.55
LTCC (Low Temp	erature Co-fired Ceramics)	6.7	0.005	0.69
メトロ	サーク™	3.0	0.002	0.47

^{*} RO3003TM laminate (ceramic-filled PTFE composites)

Loss: Strip line (Line width:0.11 mm)

^{** @10} GHz

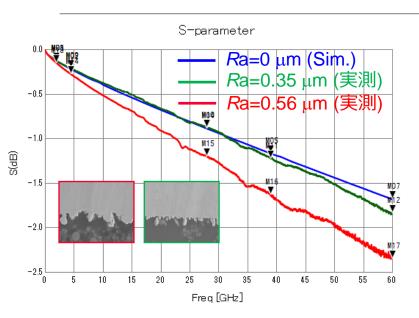
^{***} Microstrip line (Line width:0.127 mm)

材料: 低損失多層基板の特徴

		伝送損失	多層化
PTFE		$\bigcirc \bigcirc$	\triangle
DOD	粗化銅	\triangle	0 <
PCB	低粗化銅	0	0 <
LTCC		\circ	0
メトロ	」サーク™	\bigcirc \bigcirc	0

LTCC・メトロサーク™は一括積層による多層化が可能 伝送損失のほか、多層化の観点もふくめ、 ミリ波モジュールではPCB・LTCC・メトロサーク™を利用

材料: 銅の表面粗さ



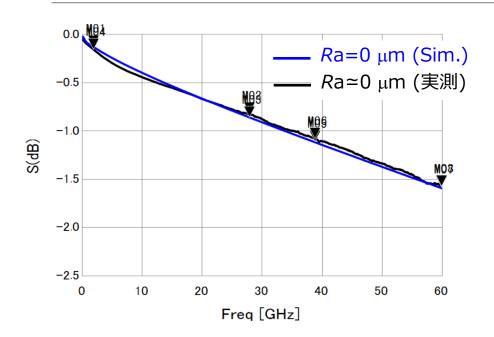
	PCB 粗化銅	PCB 低粗化銅	LTCC
表面粗さ	<i>R</i> a=0.56 μm	<i>R</i> a=0.35 μm	<i>R</i> a≃0 μm
	5 μm	5 μm	5 μm

PCBでは銅箔と樹脂の接合強度を上げるため、銅箔表面を粗す必要がある LTCCの銅箔表面は平坦化が可能である

材料: 銅の表面粗さの伝送損失への影響(PCB)

周波数	亿	表皮		
[GHz]	<i>R</i> a=0 μm Sim.	<i>R</i> a=0.35 μm 実測	<i>R</i> a=0.56 μm 実測	厚み [μm]
2.0	0.13	0.13	0.15	1.48
28.0	0.89	0.89	1.20	0.39
39.0	1.17	1.22	1.63	0.33
60.0	1.68	1.84	2.34	0.27

表皮厚み=


高周波では銅の表面のみに電流が流れ 抵抗値が増加する

Line Condition Length: 15 mm Width: 110 µm

Raが表皮厚み以下であれば、伝送損失の実測値が Ra=0 μmを仮定したシミュレーションと同等になる

材料: 銅の表面粗さの伝送損失への影響(LTCC)

周波数	伝送損失 [dB/15 mm]			
[GHz]	Ra=0 μm Sim.	<i>R</i> a=0 μm 実測		
2.0	0.13	0.16		
28.0	0.86	0.83		
39.0	1.12	1.09		
60.0	1.59	1.57		

Line Condition Length: 15 mm Width: 110 μm

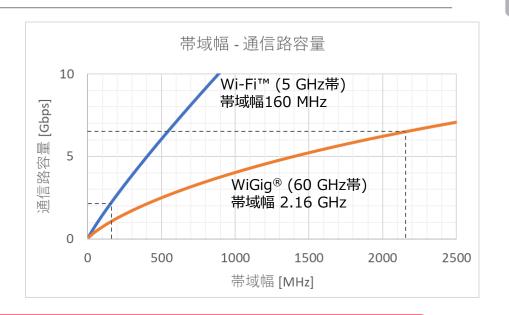
LTCCはRaが小さいため、Ra=0 μmを仮定した シミュレーションと同等の伝送損失となる

目次

- **■** はじめに
- ▶パッケージング技術
- アンテナ技術
- ┛材料技術
- ミリ波帯を用いるメリット
- まとめ

帯域幅と通信路容量

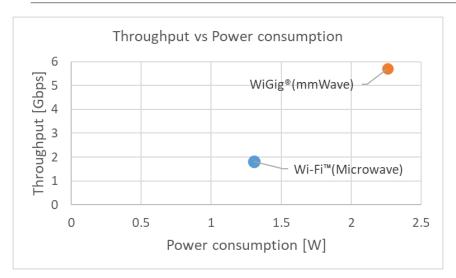
シャノン・ハートレーの式


$$C = B \log_2(1 + \frac{S}{N})$$

N = kTB

C: 通信路容量

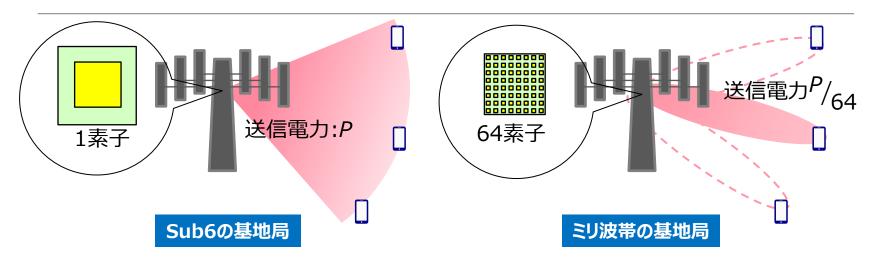
B: 帯域幅


N: 雑音電力



通信距離・送信電力・アンテナ利得が一定の条件でマイクロ 波帯とミリ波帯を比較した場合、帯域幅の広いミリ波帯の方 が高い通信路容量を実現できる

広い帯域幅による低消費電力化



ミリ波帯は、マイクロ波帯と比べて スループット当たりの消費電力が低い

ビームフォーミングによる低消費電力化

ビームフォーミングにより、素子数に反比例して 送信電力を低減できる

ミリ波帯は周波数が高くアンテナが小型のため、 多素子のアレーを用いることができる

目次

- **■** はじめに
- ▶パッケージング技術
- アンテナ技術
- ┛材料技術
- ミリ波帯を用いるメリット
- **●** まとめ

まとめ

- ミリ波帯は、新たな周波数リソースであるとともに、革新的アプリケーション開 発が期待される周波数帯である。 既存周波数と比較して伝送損失が大きいため、RFICとアンテナを一体化したア ンテナアレー一体型モジュール(AiM)が用いられる。
- 広カバレッジ・フィルタ・放熱構造などを一体化するパッケージング技術により、 高付加価値なAiMが実現できる。
- アンテナの高利得化・広カバレッジ化・広帯域化などのミリ波ならではの課題を、 小型化と共に実現するアンテナ技術は、ミリ波端末の低コスト化に向けた最重要 技術である。
- 多層化可能かつ、誘電正接や銅箔表面粗さの小さい低損失な基板材料は、AiMの 高効率化・小型化につながる重要な技術である。
- ミリ波帯は、広い帯域幅によりスループット当たりの消費電力を低減できる。ま た、ビームフォーミングにより空間的に高い電力利用効率を実現できる。

ご清聴ありがとうございました