Rohde & Schwarz Technology Symposium 2024 Japan 2024年5月16日

28 GHz帯フェーズドアレイアンテナモジュール (PAAM) のOver-The-Air (OTA) 測定

株式会社 フジクラ 新事業創生・研究開発部門 電子応用技術R&Dセンター ミリ波事業開発グループ

日次

1. フジクラにおけるミリ波製品の紹介 2. Over-The-Air (OTA)における位相測定 3. フェーズドアレイアンテナモジュール (PAAM) の ビームフォーミング測定結果 3-1. 直接遠方界 (Direct far field, DFF) 3-2. 間接遠方界 (Indirect far field, IFF) 4. ビーム位置精度を示す2次元強度マップ測定結果 5. PAAMの広帯域変調信号解析結果 6. まとめ

自己紹介

氏名:藤乘 優治郎 出身地:千葉県茂原市

現所属: 新事業創生・研究開発部門電子応用技術R&Dセンター ミリ波事業開発グループ

出身大学,大学院:慶應義塾大学,慶應義塾大学大学院

経歴: 2014年 4月 フジクラ入社 2014年 7月-2019年 3月 超電導関連業務 2017年 4月-2020年 3月 慶應義塾大学大学院 博士(工学)取得 2019年 4月-2020年 8月 高周波関連業務 2020年 9月-2023年 9月 28 GHz PAAMのOTA測定の立ち上げ、評価 2023年 10月- ミリ波市場調査、市場開拓

一言: PAAMの性能を世界に発信し、ミリ波市場を盛り上げたい **Fujikura** MW96-11-24-0053(3)

LinkedInプロフィールURL https://www.linkedin.com/in/yujiro-tojo-62a588296/

ミリ波無線通信ソリューション概要

ミリ波RFモジュールの要件

- ・均一、高速、正確なビームフォーミング
- ・高周波の信号損失を最小限に抑えたミリ波モジュール

5G-Advancedとともに始まる無線AIの時代

無線AIで可能になる3つのユースケース

Channel feedback

More efficient, predictive Channel State Information (CSI) feedback can improve user downlink throughput and reduce uplink overhead

A THE OTHER DOLLARS, MILL

Beam management

Beam prediction in time/spatial domain for overhead and latency reduction, improving beam selection accuracy, especially useful for mmWave systems

Precise positioning

Positioning accuracy enhancements for different indoor and outdoor scenarios including, e.g., those with heavy non-line-of-sight conditions

Release 18 focuses on 3 key wireless AI use cases

But many more potential use cases for the future

(Ref.) [1]「5G-Advancedから本格始動の「ワイヤレスAI」、クアルコムが描く可能性の シナリオ」<u>https://xtech.nikkei.com/atcl/nxt/news/18/15644/?P=2</u> (2024年3月14日閲覧)

<重要技術> 高速かつ正確なビームフォーミング制御

6

新事業創生・研究開発部門 電子応用技術R&Dセンター

[1]

フジクラにおけるミリ波製品の紹介

- ・モバイル無線基地局や固定無線アクセス機器に 好適な様々な機能が一体化した小型モジュール
- ・ビームフォーミングを使った省エネルギー 大容量通信
- ・自社設計の高効率RFICを使った 高速高精度のビーム切り替え

Fujikura MW96-11-24-0053(3)

60 GHz帯 無線通信モジュール

- ・世界トップレベルの500 m以上の距離での高速通信
- ・57~71 GHz ^{*1}をカバーする広帯域なアンテナ
- ・広角な自動ビームフォーミング機能により設置容易
- ・免許不要の周波数帯を使用し、技適取得済みのため お客様による面倒な各種申請が不要
- *1:国内は57~66 GHz

フェーズドアレイアンテナモジュール (PAAM) の特長

特長

- 64 素子でのEIRP = 48 dBm at EVM 3% (256QAM, BW=100 MHz) :小型モジュールで高出力
- キャリブレーションフリー: ゲインと位相が独立に制御可能, ビーム形成時の校正不要
- 高速ビームスイッチング機能 ビーム切り替え時間 220 ns以下, サポートビーム数 20000以上
- アンテナ, BFIC, FCIC, BPF, Combiner/Splitter の一体型モジュール
- 両偏波 (H pol., V pol.) で動作, ビーム制御範囲 水平方向, 垂直方向±60 deg.

フジクラPAAMの強み

- 独自設計のパッシブ型移相器により、アレイの校正作業が不要→テストコスト低
 - ・他社のRFICは、校正データを測定し不揮発メモリへの保存が必要 校正データ取得作業に時間がかかる→テストコスト高

キャリブレーションフリービームフォーミング

(例)ベクトル型の位相器^[3] デジタル指示値に対し位相の変化でゲインが変動 →位相が90度異なる信号のそれぞれの振幅の調整が必要

(Ref.) [2] B. Sadhu *et al.*, "A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications," in *IEEE Journal of Solid-State Circuits*, vol. 52, no. 12, pp. 3373-3391, Dec. 2017 [3] A. Bacchetta et al. "Sivers function in a spectator model with axial-vector diquarks", Phys. Lett. B, vol. 578, pp. 109–118, 2004. [4] 株式会社フジクラ: 「第 5 世代移動通信システム用 ミリ波帯 RFIC とその半導体技術」,ホワイトペーパー, https://www.fujikura.co.jp/rd/gihou/backnumber/pages/__icsFiles/afieldfile/2021/10/01/134_R6.pdf (2024年4月16日閲覧).

MW96-11-24-0053(3)

r Fujikura

<キャリブレーションフリー制御>

(例)実時間遅延回路型の位相器^[4] デジタル指示値に対し, 位相とゲイン応答が独立 →ゲイン制御で位相値は一定 →位相制御でゲインは一定

10

本報告における測定概要

キャリブレーションフリーなフジクラPAAMの特性を

ローデ・シュワルツ製の測定器を利用した測定により明らかにする

・Over-The-Air (OTA)における位相測定

MW96-11-24-0053(3)

OTA環境で安定して各アンテナ素子の位相を測定し、モジュールレベルでのキャ リブレーションフリーを実証

・ビームフォーミング測定

直接遠方界 (DFF) とCompact Antenna Test Range(CATR) による間接遠方界 (IFF) で良好なビームパターンを確認し、さらに高いビーム位置精度を実証

・広帯域変調信号解析

Fuiikura

800 MHz (8cc x 100 MHz)の広帯域変調信号により低EVM、低ACLRを実証

2. Over-The-Air (OTA)における位相測定

OTA測定システムセットアップ

Over-The-Air test (OTA test):空間を介して電波の送信/受信を行う測定

(Ref.)[5] 3GPP TS 38.141-2 version 17.12.0 Release 17 (2024-02) (2024年5月8日閲覧)

https://www.etsi.org/deliver/etsi_ts/138100_138199/13814102/17.12.00_60/ts_13814102v171200p.pdf

Fuikura

MW96-11-24-0053(3)

PAAMの構成と周波数変換デバイスの位相測定に対する課題

OTAにおける位相測定ブロック図

OTA 測定データとIC 測定データの比較

OTAにおける位相、パワー測定画面

ローデ・シュワルツ製ZNA67におけるPAAMの位相、パワー測定画面

ローデ・シュワルツ製 ZNAの機能 ・4 port + LO port ・内蔵LO信号出力 ・内蔵位相コヒーレント レ PAAMのパワーと位相 を高精度で測定可能

RF 28 GHz Band width : 100 Hz Source Coherence : ON Phase Mode Coherence : On

Fujikura MW96-11-24-0053(3)

PAAMの位相,ゲイン制御の概要結果

PAAMのFEごとの位相ばらつき解析

各FEの位相プロットの近似直線傾きの分布を解析

MW96-11-24-0053(3)

Fujikura

20

PAAMのFEごとの位相ばらつき解析

各FEの位相プロットの近似直線の切片分布を解析

3. PAAMのビームフォーミング測定結果 3-1. 直接遠方界 (Direct far field, DFF)

新事業創生・研究開発部門 電子応用技術R&Dセンター

ビームフォーミングにおける指向角度設定

・ビーム指向角 θ (theta), アンテナ面内角度φ (phi)の2パラメータで全空間上のビーム位置を決定

MW96-11-24-0053(3)

電子応用技術R&Dセンター 新事業創生・研究開発部門

直接遠方界におけるPAAMのビームパターン測定結果

直接遠方界における PAAMのビームパターン測定結果詳細

3. PAAMのビームフォーミング測定結果 3-2. 間接遠方界 (Indirect far field, IFF)

Rohde & Schwarz とフジクラの共同Webinarの内容紹介

Collaboration as great as it can get.

Dr. Benoit Derat interviews Yoshiharu Fujisaku, General Manager at Fujikura Ltd.

(Ref.) [8] Video: Highly integrated phased array antenna design and the required testing https://www.rohde-schwarz.com/jp/knowledge-center/videos/video-highly-integrated-phased-array-antenna-design-and-the-required-testing-video-detailpage_251220-1436736.html (2024年4月3日閲覧)

2: OTA測定Webinar (公開予定) 出演者:フジクラ : 藤乘,土谷, Rohde&Schwarz : Fabrício, Thilo 内容: PAAM紹介とCATRでのOTA測定コラボレーション

> サンプル FutureAccess™Type-B Daughter card

(Ref.) Millimeter-wave Wireless Communications Module https://mmwavetech.fujikura.jp/5g/ (2024年4月3日閲覧)

完成予定動画 45 min

Fabrício Tsuchiya Tojo Thilo

29

測定ブロック図:間接遠方界 ベンチトップ型CATR ATS800B

DFF 1 deg. ステップ測定 vs IFF 時間掃引ビームパターン比較

F Fujikura

MW96-11-24-0053(3)

31

4. ビーム位置精度を示す 2次元強度マップ測定結果

ビーム位置精度を示す2次元強度マップ

・ビームパターン測定:ビームを特定方向に向け、物理的に被測定物を回転

・2次元強度マップ測定:被測定物を固定し,2次元にビームをスイープ

θ **V**

34

端末位置を精度よく検知することを想定したデモンストレーションとして有効 **F** Fujikura MW96-11-24-0053(3) 新事業創生・研究開発部門 電子応用技術R&Dセンター

5. PAAMの広帯域変調信号解析結果

PAAMの変調信号解析ブロック図

・電波暗室内にPAAMと対向ホーンアンテナを設置 (対向距離 d = 3.0 m)

MW96-11-24-0053(3)

Fujikura

・ローデ・シュワルツ製機器を使用し、PAAMの変調精度(EVM), 隣接チャネル漏洩電力比(ACLR)を確認

変調信号での各出力におけるEVM特性

測定条件: RF 28 GHz, 送信側変調信号: TM3.1a 256QAM BW=100 MHz, 400 MHz, 800 MHz (8cc x 100 MHz)

EVM vs EIRPバスタブ曲線の取得→測定自動化 FutureAccess[™] Type-C

MW96-11-24-0053(3)

• EVMを大幅に改善

F Fujikura

EIRP = 48 dBmにて3GPP要求の256QAM, EVM 4.5%以下を満たす

新事業創生・研究開発部門 電子応用技術R&Dセンター

BW=800 MHz (8cc x 100 MHz)におけるTx EVM and ACLR 解析結果

測定条件: RF 28 GHz with total BW=800 MHz (8cc x 100 MHz) 送信側変調信号 EVM : TM3.1a 256QAM, ACLR : TM1.1 QPSK

FutureAccess[™] Type-C

MW96-11-24-0053(3)

Fujikura

広帯域変調信号において良好なEVMとACLRを示す

- ・Tx ACLR -29.5 dBc at EIRP = 48 dBm 3GPPの要求: -25.7 dBc以下を満たす

広帯域変調信号における28 GHz帯スペクトル比較とACLR比較

6. まとめ

- ・OTAにおける位相測定 フジクラ PAAMとローデ・シュワルツ製 ZNAによりOTAで安定した位相測定を実現 PAAMの位相とゲインを独立に制御可能であることを実証
- ・ビームフォーミング測定結果
 直接遠方界 (Direct far field, DFF), 間接遠方界 (Indirect far field, IFF)
 遠方界アレイファクタシミュレーションとよく一致
- ・ビーム位置精度を示す2次元強度マップ 端末位置を精度よく検知することを想定したデモとして有効
- ・PAAMの変調信号解析
 広帯域変調信号では相互変調ひずみの影響でACLRが劣化
 FutureAccess[™] Type-Cの変調ひずみはType-Bに比べ顕著に改善

ご清聴ありがとうございました。

(参考情報) Rohde & Schwarzとフジクラのコラボレーション動画紹介

YouTube

Highly integrated phased array antenna design and the required testing ^[8]

(Ref.) [8] https://www.rohde-schwarz.com/jp/knowledge-center/videos/video-highlyintegrated-phased-array-antenna-design-and-the-required-testing-videodetailpage 251220-1436736.html

collaboration as great as it can get. Dr. Bengit Deret interviews Yoshiharu Fulisaku, General Manager

MWC2024 LinkedIn short video^[11]

(Ref.) [11] https://www.linkedin.com/feed/update/urn:li:activity:7168486954945171456/

研究開発部門

新事業創生・

・PAAMの広帯域変調信号解析 株式会社フジクラ 公式アカウントYouTubeに掲載 (Ref.) [12] https://voutube.com/watch?v=vbCEzzX1Ing&feature=shared

42

電子応用技術R&Dセンター

(3. PAAMのビームフォーミング測定結果の補助結果) アクティブ素子数と結合ゲインの関係, ビーム形状の変化

44

新事業創生・研究開発部門 電子応用技術R&Dセン

フジクラのPAAMの特長

- ・位相キャリブレーションなしで素子数の増加により結合ゲインが線形増加
- ・アクティブ素子数の制御により、ビーム幅の増減が可能

Fujikura MW96-11-24-0053(3)

(4. ビーム位置精度を示す2次元強度マップ測定結果の補助資料) MWC2024のフジクラブースにおける動態展示紹介

(5. PAAMの広帯域変調信号解析結果の補助資料) CW信号での入力-出力特性

