Rohde & Schwarz Technology Symposium 2024 Japan

6Gに向けたミリ波帯・テラヘルツ帯 フェーズドアレイ無線技術

岡田健一 東京工業大学 工学院 電気電子系 okada@ee.e.titech.ac.jp

東エ大における次世代無線通信技術の研究開発

^{2024/5/16}

CMOS IC

Contents

- ・なぜ、Phased Arrayが必要なのか?
- ・THzになるとミリ波と何が違うのか?
- ・将来の無線通信はどうなるのか?

ミリ波帯無線通信技術の動向

Cellular & Wi-Fi Trend

ψ

Tokyo Tech

日本国内の電波使用状況

20GHz以上の周波数は比較的空いている

http://www.tele.soumu.go.jp/j/adm/freq/search/myuse/index.htm 2024/5/16

ミリ波の弱点 通信距離を長くしずらい

フリスの伝達公式

$$P_r = \left(\frac{\lambda}{4\pi d}\right)^2 G_r G_t P_t$$

P_r: 受信電力 [dBm]

P_t:送信電力 [dBm]

G_r: 受信アンテナ利得 [dBi]

λ: 波長 [m]

d: 送受信アンテナ間距離 [m]

※等方性アンテナ0dBiが基準

ダイポールアンテナ 2.14dBi=0dBd

$$P_r[dBm] \cong P_t[dBm] + G_r[dB] + G_t[dB] -32.4[dB] - 20\log_{10}d[km] - 20\log_{10}f[MHz]$$

伝送距離 vs 搬送波周波数

$$C = B \log_2(1 + S/N)$$

$$N = kT B$$

$$S = P_r = P_t G_t G_r \left(\frac{c}{4\pi f_c d}\right)^2$$

$$d = \frac{c}{4\pi f_{\rm c}} \sqrt{\frac{P_{\rm t} G_{\rm t} G_{\rm r}}{{\rm kT} B 2^m}}$$
$$m = C/B$$

同じ送信電力・帯域幅・アンテナ利得において 2.4GHz (λ=125mm): 12m 28GHz (λ=10.7mm): 1m 300GHz (λ=1mm): 0.1m

28GHzフェーズドアレイ無線機(基地局)

64-element phased array J. Pang, et al., JSSC 2021

フェーズドアレイアンテナ

パッチアンテナ利得4dBi (n=256で+24dB)

PA output: $P_t \implies n P_t$ Antenna gain: $G_t \implies n G_t$

フェーズドアレイアンテナ

パッチアンテナ利得4dBi (n=256で+24dB) 15 n=8 +3dB 10 Antenna gain G [dBi] 4 5 $\lambda/2$ 0 -5 -10 **0**° **0**° **0**° **0**° -15 -20 -90 -60 -30 30 60 0 90 Beam angle [deg]

PA output: $P_t \Rightarrow n P_t$ Antenna gain: $G_t \Rightarrow n G_t$

フェーズドアレイアンテナ

フェーズドアレイアンテナ

フェーズドアレイアンテナ

n: #antenna

90

フェーズドアレイアンテナ

15[°]

PA output: $P_t \implies n P_t$ Antenna gain: $G_t \implies n G_t$

フェーズドアレイアンテナ

フェーズドアレイアンテナ

フェーズドアレイアンテナ

28GHz LOS (NLOSなら約1/10)

n = 1: d = 1m

n = 4: d = 8m

n = 16: d = 64m

n = 64: d = 512m

n = 256: d = 4,096m

LOS:Line of Sight NLOS:Non Line of Sight

利点1:通信距離が伸ばせる 利点2:通信の向きを変えられる

n = 10000: d = 1000km (60cm x 60cm array)

最高伝送速度

(参考) 1CCあたりの理論的な最高伝送速度

✓ 1コンポーネントキャリア(CC)あたりの理論的な最高伝送速度は、次式により算出

Data rete [bps] = $N_{MIMO} \times N_{Mod} \times f \times R_{max} \times (N_{RB} \times 12 / T_{symbol}) \times (1 - R_{OH}) \times R_{DL/UL}$

N_{MIMO}:最大MIMOレイヤ数 N_{MOD}:変調シンボルあたりのビット数 f:UEのベースバンド処理におけるピークレートを算出するためのスケーリングファクター R_{MAX}:最大符号化率 N_{RB}:1CCあたりのリソースブロック数 T_{symbol}:1OFDMシンボルあたりの時間長[sec]

R_{он}:無線フレームあたりのオーバヘッド率(参照信号や制御チャネルなど)

R_{DL/UL}:TDDのUL/DLの割当て比率

(算出例:DLの場合)

※3GPPで詳細検討中。今後変更される可能性有

$10.1 [Gbps] = 8 \times 6 \times 1 \times (948/1024) \times (264 \times 12 / (8.93 \times 10^{-6})) \times (1 - 0.2) \times (4 / 5) \times 10^{-9}$

N _{MIMO}	= 8	% 1	DL:最大 <u>8レイヤ</u> (SU-MIMO) ,12レイヤ (MU-MIMO) 、UL:最大4レイヤ (SU-MIMO) ,12レイヤ (MU-MIMO)
N _{MOD}	= 6	Ж2	QPSK:2ビット、16QAM:4ビット、 <u>64QAM:6ビット</u> 、256QAM:8ビット
f	= 1	ЖЗ	システム帯域の最高伝送速度の計算の際は <u>1</u> 、UEのベースバンド処理能力に応じて0.75も選択可能
R _{MAX}	= 948/1024	₩4	データチャネル:LDPC符号(最 大符号化率 <u>948/1024</u>)、制御チャネル:Polar符号
N _{RB}	= 264	₩5	下表。 <u>264</u> は、ミリ波・サブキャリア間隔120kHz・400MHz幅の場合
T _{symbol}	= 8.93×10 ⁻⁶	₩6	スライド[5G NR(New Radio)フレーム構成]参照。サブキャリア間隔120kHzの場合、 <u>8.93µsec</u> (=8.93×10 ⁻⁶ sec)
R _{OH}	= 0.2	Ж7	復調用参照信号や制御チャネル、ミリ波では位相雑音低減用の信号等。一般的にSub-6は0.14、ミリ波は <u>0.2</u>
R _{DL/UL}	= 4/5	₩8	TDDのDL/ULの割当て比率。 <u>4/5</u> は、DL:UL=4:1とした場合のDLの割合。
		1	長: 3GPP 1CC(コンポーネントキャリア)幅 あたりのリソースブロック(RB)数

	サフ゛キャリ	1 C C (コンポーネントキャリア)幅 [MHz]あたりのリソースブロック(R B)数												
	/間隔 [kHz]	10	15	20	30	40	50	60	70	80	90	100	200	400
	15	52	79	106	160	216	270	-	-	-	-	-	-	-
Sub-6	30	24	38	51	78	106	133	162	189	217	245	273	-	-
	60	11	18	24	38	51	65	79	93	107	121	135	-	-
28GHz帯	60	-	-	-	-	-	66	-	-	-	-	132	264	-
	120	-	-	-	-	-	32	-	-	-	-	66	132	<u>264</u>

2024/5/16

http://www.soumu.go.jp/main_content/000541989.pdf

21

= 3.3631Gbps

2xMIMO, 256QAM, NR準拠PHY/MAC overhead込み (2 * 6 * 1 * (948/1024) * (264 * 12 / (8.93e-6)) * (1 - 0.2) * (4 / 5) * 1e-9)

= 2.5223Gbps

2xMIMO, 64QAM, NR準拠PHY/MAC overhead込み (2 * 6 * 1 * (948/1024) * (264 * 12 / (8.93e-6)) * (1 - 0.2) * (4 / 5) * 1e-9)

SISO, 64QAM, NR準拠PHY/MAC overhead込み (1 * 6 * 1 * (948/1024) * (264 * 12 / (8.93e-6)) * (1 - 0.2) * (4 / 5) * 1e-9)= 1.2612Gbps

伝送速度の計算

伝送速度と距離の関係@28GHz

DL(64QAM): 256(BS)-to-4(UE)							
Carrier Freq.	28GHz	Distance	500m				
Channel BW.	400MHz	FSPL	115dB				
kТВ	-88dBm	Req. SNR	26dB (64-QAM)				
	тх	RX					
TX Array Size	256	RX Array Size	4				
TX Array Gain G _{TXArray}	24dB	RX Array Gain G _{RXArray}	6dB				
Antenna Gain- Imp. Loss G _{Ant}	4dB	Antenna Gain- Imp. Loss G _{Ant}	4dB				
PA Pout P _{outPA}	5dBm+24dB	NF	8dB				
TX EIRP	57dBm (P _{outPA} +G _{TXArray} + G _{Ant})	Pwr. After FSPL P _{Rev}	-58dBm (EIRP-FSPL)				
Received TX-to-RX SNR	(P _{Rev} -	32dB +G _{RXArray} +G _{Ant} -NF	32dB _{RXArray} +G _{Ant} -NF-kTB)				

$d \propto n_{\mathrm{TX}} \sqrt{n_{\mathrm{RX}}}$

Downlink(基地局⇒端末) QPSK 0.42Gbps @ 2160m 16QAM 0.84Gbps @ 1000m 64QAM 1.26Gbps @ 500m 256QAM 1.68Gbps @ 110m

Uplink(端末⇒基地局) QPSK 0.105Gbps @ 500m 16QAM 0.210Gbps @ 200m 64QAM 0.315Gbps @ 60m

BS: Backoff 6dB(QPSK, 16QAM, 64QAM), 13dB(256QAM) UE: Backoff 0dB(QPSK), 2dB(16QAM), 6dB(64QAM)

UL/DL Data Rate vs Distance

テラヘルツ通信技術の意義

Theoretical Data Rate Limit

$$C = B \log_2(1 + S/N)$$

$$N = kT B$$

$$S = P_r = P_t G_t G_r \left(\frac{c}{4\pi f_c d}\right)^2$$

$$B_r = \alpha f_c$$

new assumption

$$C_{\text{peak}} = C_0 \alpha^{\frac{2}{3}} \left(\frac{P_t G_t G_r}{d^2} \right)^{\frac{1}{3}}$$
$$C_0 = 822 \text{Gb/s}$$

K. Okada, IEDM 2013 K. Okada, IMS 2019, WSF-2 K. Okada, BCICTS 2019 2024/5/16 C: channel capacity B: bandwidth S: signal power N: noise power P_t : transmitting power P_r : receiving power $G_t G_r$: antenna gains f_c : carrier frequency c: light of speed d: distance btw Tx and Rx

Theoretical Data Rate Limit

Theoretical Data Rate Limit

K. Okada, IEDM 2013

K. Okada, IMS 2019, WSF-2

K. Okada, BCICTS 2019

Capacity with Multiple Antennas

$$C = B\log_2\left\{\det\left(I + \frac{\gamma_0}{n}H^HH\right)\right\} \qquad \gamma_0 = SNR$$

- (1) SISO $C = B \log_2(1 + \gamma_0)$
- (2) MIMO (spatial correlation=1) e.g. $H = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $C = B \log_2(1 + n \gamma_0)$ *equivalent to phased array
- (3) MIMO (spatial correlation=0) e.g. $H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $C = B n \log_2(1 + \gamma_0/n)$

E. Telatar, "Capacity of Multi-antenna Gaussian Channels," European transactions on telecommunications, vol. 10, no. 6, pp. 585-595, Nov. 1999.

Theoretical Limit of Data Rate

2024/5/16

more output power by non-CMOS technology 30

μ

Tokyo Tech

Theoretical Limit of Data Rate

- more output power by non-CMOS technology 31

μ

Tokyo Tech

テラヘルツCMOS無線機

Development History of 60GHz

120Gbps 100GHz帯CMOS無線機

K.K.Tokgoz, ISSCC 2018

waveguide module

5G phased-array (~30GHz)

for 100m distance:

Required $P_t = 10$ dBm

300GHz phased-array

0.5mm pitch 6400 elements

for 100m distance:

Required $P_t = -30$ dBm

 $P_{\rm DC} = 6400 \text{mW} (10\% \text{ efficiency}) P_{\rm DC} = 64 \text{mW} (10\% \text{ efficiency})$

同じ送信電力なら100倍距離が延びる

300GHz-Band CMOS TRX

TX: 270mW RX: 140mW TX-RX: 34Gbps

IEEE802.15.3d Standard compatibility

*CHNL_ID is the channel ID as defined by IEEE802.15.3d standard [1] (e.g. for ch.20, CHNL_ID=20). **Roll-off factor of all the measurements is 0.25 as specified by the standard.

2024/5/16

I. Abdo, et al., IMS 2020

1mm

37

ħ

Tokyo Tech

Chip Size over Frequency

Chip size is not scaled, and the 2D array implementation is difficult for >80GHz

300GHz-band CMOS Phased-Array TRX

THz phased array

InP+CMOS Hybrid Phased Array

Transistor Layout Optimization

<mark>8</mark> 0	only 2 vias to connect gate with PO → large Gate resistance
<mark>0</mark>	large Drain-Source (M2-M4) overlap area → large Cds capacitance
38	Gate-Source (M3-M4) overlap → large Cgs capacitance

00	additional drain path in M6 → Gate resistance ↓
00	increase vias from 2 to 4 to connect Gate and PO → Gate resistance ↓
30	hollow rectangles in M6 to avoid Gate-Drain overlap → Cgd capacitance ↓
@☺	less Gate-Source (M6-M2) overlap → Cgs capacitance ↓

fmax: 310GHz \Rightarrow 350GHz

300GHz-band PA by 65nm CMOS

- Each PA stage was optimized with different transmission line lengths to boost different operation frequencies.
- The PA gain is higher than 20 dB from 237 to 267 GHz with a sharp cutoff frequency window to suppress out-of-band undesired signals.

4-element 300GHz-band PA-Last Phased Array

4-element 300GHz-band PA-Last Phased Array

64-element module size vs Japanese coin 1 Yen

88-136GHz Full-Duplex Phased Array

NTN: from GEO to LEO

NTN: from GEO to LEO

	GEO (Geostationary Orbit) 静止軌道衛星	LEO (Low Earth Orbit) 低軌道衛星			
Orbit altitude	36,000km	500-1500km			
Latency	120ms	2-5ms			
Free-space path loss	212dB @ 28GHz	175-187dB @ 28GHz			
Antenna	Fixed beam	Active phased array (±60degree)			
Sat deployment	2-3 satellites	Constellation by hundreds/thousands of satellites			
Lifetime	15- years	5-10 years			
Satellite Size	Several tons	-300kg e.g. Starlink 260kg CubeSat(1U) 1.33kg			

東工大 OrigamiSat Projects

deployable membrane

代表:東工大機械系 坂本啓教授

- 折り紙に着想を得た展開型アンテナ技術
- JAXA革新的衛星技術実証プログラム

fabric-based reflect array

active phased array

MTT-Sat Challenge winner https://mtt.org/mtt-sat-challenge/

Ka-band Earth Station (26-40GHz)

LNA: Low Noise Amplifier RFVGA: RF Variable Gain Amplifier ACI: Adjacent Channel Interfere

2024/5/16

一般的な衛星通信用無線機

開発した無線IC

PA DA + BUF LO TX LPF+VGA LNA RFVGA X LO RX1 LPF+VGA LO RX1 LPF+VGA LO RX1

Y. Wang, et al., JSSC 2021

64dBm-EIRP 26.6W Ka-band Satcom TX

D. You, et al., ISSCC 2023

虎

Tokyo Tech

3.4mW/element Satcom RX

8-element Phased-Array RX

Note: #: normalized to 256APSK, BWc=1.6GHz,*: single element, ^: calculated from SNDR

26.7-30.4GHz

Multi-Coupling Common-Gate LNA

Modulation	16 APSK	16 APSK	256 APSK	256 APSK	
Symbol Rate	0.8 GBaud	1.6 GBaud	0.8 GBaud	1.6 GBaud	
Constellation	· · · · ·		0	0	
Data Rate	3.2 Gb/s	6.4 Gb/s	6.4 Gb/s	12.8Gb/s	
RX EVM (RMS)	-36.4dB	-33.1dB	-35.7dB	-33.2dB	

*Measured by 8x8 Sub-Array Module

X. Fu, et al., ISSCC 2022/JSSC 2024

ψ

Tokyo Tech

2.95mW/element Satcom RX with Radhard

X. Fu, et al., ISSCC/JSSC 2023

まとめ・今後の課題

6Gへ向けたテラヘルツフェーズドアレイモジュール実現のた めの超高密度・低消費電力IC技術の確立

- ・ フェーズドアレイの使いこなし(高精度ビーム制御)
- 高エネルギ効率(高電力効率IC設計)
- ・ 低コストIC・低コストテスト技術
- 高密度化(高密度IC, 高密度モジュール)
- 高周波実装技術・高周波材料技術
 - ・ 低コスト
 - 低損失、協調設計、熱設計、高信頼(量産実績)

Thank You

